US ERA ARCHIVE DOCUMENT

PPDC Registration Review Work Group

July 20, 2005

Kennan Garvey
OPP Special Review &
Reregistration Division

Chair, OPP Registration Review Implementation Work Group

Purpose

- What are PPDC Registration Review Work Group views on grouping related cases in the RR schedule?
- Majority of chemicals remain in chronological order.
- Achieve efficiencies by considering members of major chemical classes together.

Accomplishing Statutory Goal

- Statute sets goal of reviewing all pesticides every 15 years
- Currently 671 cases & 1154 Al's, and new Al's registered every year.
- Review process must be efficient:
 - Resource uncertainties in early years of program, &
 - OPP must complete reregistration work
- Grouping by major chemical classes can make Registration Review more efficient.

Proposed Rule: Scheduling Cases

- Proposed rule: www.epa.gov/oppsrrd1/registration_review/
- 155.42: EPA forms RR cases & assigns a baseline date to each.
 - A case is one or more Als that are so closely related in chemical structure & tox profile as to allow common use of some or all required data for hazard assessment.
- 155.44: Schedules are generally based on baseline dates, but EPA may change the placement of cases in the schedule if warranted to achieve program efficiencies or for other reasons.

Draft Schedule Availability

- We may release a draft RR schedule for the first 3 years of the program during the comment period of the proposed rule
- The draft schedule may group cases in major chemical classes.
- We will consider PPDC input on chemical class groupings as we develop the draft schedule

14 major chemical classes/groups

- Carbamate
- Chlorine Compound
- Chloroacetanilide
- Dinitroaniline
- Imidazolinone
- Organophosphate
- Phenoxy

- Pyridine
- Sulfonylurea
- Synthetic Pyrethroid
- Triazine
- Triazole
- Rodenticide group
- Soil Fumigant group

Seeking comment on other classes that should be considered.

(1) Advantages of considering chemical classes

- Pesticides in the same chemical class generally have similar
 - toxicity profiles
 - fate properties (e.g., persistence and leaching)
 - risk issues
 - use patterns
 - target pests
 - mitigation issues
- They also
 - have comparable labeling requirements, &
 - are studied together in many open literature articles.

(2) Advantages of considering chemical classes

- Facilitates consideration of any new research findings about new common mechanisms of action
- Facilitates completion of any resulting cumulative risk assessments.

(3) Advantages of considering chemical classes

- Levels the playing field among cases in the class
 - DCIs, when needed, issued around the same time
 - Risk mitigation in similar time frame

Advantages of chemical groups – e.g., rodenticides & fumigants

- Chemical groups often share similar characteristics.
- Simultaneous review of pesticides within the rodenticide and soil fumigant groups
 - Similar major use and exposure patterns
 - Similar toxicity profiles for many cases in the group
- Achieve efficiencies

Effect of chemical classes/groups on schedule

- About 1/3 of RR conventional cases are in one of the major chemical classes or groups
- Majority of conventional cases remain in chronological order.
- We do not expect chemical classes to have a major effect on scheduling antimicrobials, except chlorine & bromine compounds, or biopesticides.

(1) Which classes should advance?

- Organophosphates & carbamates
 - cumulative done by August 2006
- Potential endangered species concerns are not addressed in reregistration
 - these concerns need to be addressed systematically for OP's and carbamates.
- Benefits all stakeholders to address these issues and have assured use following decision.

(2) Which classes should advance?

- Synthetic pyrethroids
 - may have a common mechanism of action, pending completion of ongoing research, and Agency review of outcomes and decision on appropriate grouping(s)
 - and would then need early review.

(1) Effect of considering chemical classes/groups

 The following slides show the effect of a purely chronological schedule – oldest first – vs. a chronological schedule that considers chemical classes & groups.

Only conventional chemicals are shown.

(2) Effect of considering chemical classes & groups

- In a purely chronological schedule, cases within each class are distributed randomly across the 15-year cycle.
- Grouping related classes provides more efficient scheduling & workload.
- Other cases remain in chronological order.
- Focus on first 3 to 5 years.

Chronological Schedule (sulfonylureas)

Chronological Schedule (sulfonylureas)

Chronological Schedule (sulfonylureas)

Chronological Schedule (pyrethroids)

Chronological Schedule (pyrethroids)

Chronological Schedule (pyrethroids)

Chronological Schedule (organophosphates)

Chronological Schedule (organophosphates)

Chronological Schedule (organophosphates)

Chronological Schedule with Chemical Classes/Groups Identified

Chronological Schedule with Chemical Classes/Groups Identified

Chronological Schedule with Chemical Classes/Groups Identified

Chronological with Chemical Class/Group Approach

Chronological with Chemical Class/Group Approach

Chronological with Chemical Class/Group Approach

Conclusion

 We seek your input on the advantages and disadvantages of this approach.